Question:
is life possible on mars?
1970-01-01 00:00:00 UTC
is life possible on mars?
Twenty answers:
the_zombie
2006-05-28 04:16:30 UTC
not quite
GoodLooking
2006-05-28 03:43:47 UTC
Mars, Water and Life





Why Explore Mars?



After Earth, Mars is the planet with the most hospitable climate in the solar system. So hospitable that it may once have harbored primitive, bacteria-like life. Outflow channels and other geologic features provide ample evidence that billions of years ago liquid water flowed on the surface of Mars. Although liquid water may still exist deep below the surface of Mars, currently the temperature is too low and the atmosphere too thin for liquid water to exist at the surface.



What caused the change in Mars' climate? Were the conditions necessary for life to originate ever present on Mars? Could there be bacteria in the subsurface alive today? These are the questions that lead us to explore Mars. The climate of Mars has obviously cooled dramatically. By studying the reasons for climate change on Mars, which lacks the complications of oceans, a biosphere, and industrial contaminants, we may begin to understand the forces driving climate change on Earth. As we begin to explore the universe and search for planets in other solar systems, we must first ask the question 'Did life occur on another planet in our own solar system?' and 'What are the minimal conditions necessary for the formation of life?'





What Are We Looking For?

The planet Mars landed in the middle of immense public attention on July 4, 1997, when Mars Pathfinder touched down on a windswept, rock-laden ancient flood plain. Two months later, Mars Global Surveyor went into orbit, sending back pictures of towering volcanoes and gaping chasms at resolutions never before seen.



In December 1998 and January 1999, another orbiter and lander were launched to Mars. And every 26 months over the next decade, when the alignment of Earth and Mars are suitable for launches, still more robotic spacecraft will join them at the red planet.



These spacecraft carry varied payloads, ranging from cameras and other sensors to rovers and robotic arms. Some of them have their roots in different NASA programs of science or technology development. But they all have the goal of understanding Mars better, primarily by delving into its geology, climate and history.



With the announcement in 1996 by a team of scientists that a meteorite believed to have come from Mars contained what might be the residue of ancient microbes, public interest became regalvanized by the possibility of past or present life there. The key to understanding whether life could have evolved on Mars, many scientists believe, is understanding the history of water on the planet.





Mars Exploration: Fundamental Questions

What is the meteorology and climate history of Mars?



What are, and where are, the reservoirs of water and carbon dioxide on Mars?

What is the process of climate change including behavior of the polar caps?

What does the history of climate change on Mars tell us about Earth?

Has there ever been life on Mars?



What is the evidence for, and timing of, warmer, wetter past conditions?

Where is the evidence for past life likely to be found on Mars?

How do we recognize evidence of past life and sample Mars properly?

What is the geology and inventory of resources on Mars?



What is the interior structure of Mars and is the planet active today?

What do the global topography and geologic structure tell about the planet's evolution?

What are the global inventory and distribution of near surface materials and volatiles?

Should Mars be the next destination for human exploration?





Mars And Water

Mars perhaps first caught public fancy in the late 1870s, when Italian astronomer Giovanni Schiapparelli reported using a telescope to observe canali, or channels, on Mars. A possible mistranslation of this word as canals may have fired the imagination of Percival Lowell, an American businessman with an interest in astronomy. Lowell founded an observatory in Arizona, where his observations of the red planet convinced him that the canals were dug by intelligent beings - a view which he energetically promoted for many years.



By the turn of the century, popular songs told of sending messages between Earth and Mars by way of huge signal mirrors. On the dark side, H.G. Wells' 1898 novel The War of the Worlds portrayed an invasion of Earth by technologically superior Martians desperate for water. In the early 1900s novelist Edgar Rice Burroughs, known for the Tarzan series, also entertained young readers with tales of adventures among the exotic inhabitants of Mars, which he called Barsoom.



Fact began to turn against such imaginings when the first robotic spacecraft were sent to Mars in the 1960s. Pictures from the first flyby and orbiter missions showed a desolate world, pockmarked with craters like Earth's Moon. The first wave of Mars exploration culminated in the Viking mission, which sent two orbiters and two landers to the planet in 1975. The landers included experiments that conducted chemical tests in search of life. Most scientists interpreted the results of these tests as negative, deflating hopes of a world where life is widespread.



The science community had many other reasons for being interested in Mars apart from searching for life; the next mission on the drawing boards, Mars Observer, concentrated on a study of the planet's geology and climate. Over the next 20 years, however, new developments in studies on Earth came to change the way that scientists thought about life and Mars.



One was the 1996 announcement by a team from Stanford University, NASA's Johnson Space Center and Quebec's McGill University that a meteorite believed to have originated on Mars contained what might be the fossils of ancient microbes. This rock and other so-called Mars meteorites discovered on several continents on Earth are believed to have been blasted away from the red planet by asteroid or meteor impacts. They are thought to come from Mars because gases trapped in some of the rocks match the composition of Mars' atmosphere. Not all scientists agreed with the conclusions of the team announcing the discovery of fossils, but it reopened the issue of life on Mars.



Other developments that shaped scientists' thinking included new research on how and where life thrives on Earth. The fundamental requirements for life as we know it are liquid water, organic compounds and an energy source for synthesizing complex organic molecules. Beyond these basics, we do not yet understand the environmental and chemical evolution that leads to the origin of life. But in recent years it has become increasingly clear that life can thrive in settings much different from the longheld notion of a tropical soup rich in organic nutrients.



In the 1980s and 1990s, biologists found that microbial life has an amazing flexibility for surviving in extreme environments - niches that by turn are extraordinarily hot, or cold, or dry, or under immense pressures - that would be completely inhospitable to humans or complex animals. Some scientists even concluded that life may have begun on Earth in heat vents far under the ocean's surface.



This in turn had its effect on how scientists thought about Mars. Life might not be so widespread that it would be found at the foot of a lander spacecraft, but it may have thrived billions of years ago in an underground thermal spring. Or it might still exist in some form in niches below the frigid, dry, windswept surface wherever there might be liquid water.



NASA scientists also began to rethink how to look for signs of past or current life on Mars. In this new view, the markers of life may well be so subtle that the range of test equipment required to detect it would be far too complicated to package onto a spacecraft. It made more sense to collect samples of Martian rock, soil and air to bring back to Earth, where they could be subjected to much more extensive laboratory testing with state-of-the-art equipment.



Mars and Water Mars today is too cold, with an atmosphere that is too thin, to support liquid water on its surface. Yet scientists who studied images from the Viking orbiters kept encountering features that appeared to be formed by flowing water - among them deep channels and canyons, and even features that appeared to be ancient lake shorelines. Added to this were more recent observations by Mars Pathfinder and Mars Global Surveyor which suggested widespread flowing water in the planet's past. Some scientists identified features which they believe appear to be carved by torrents of water with the force of 10,000 Mississippi Rivers.



There is no general agreement, however, on what form water took on the early Mars. Two competing views are currently popular in the science community. According to one theory, Mars was once much warmer and wetter, with a thicker atmosphere; it may well have boasted lakes or oceans, rivers and rain. According to the other theory, Mars was always cold, but water trapped as underground ice was periodically released when heating caused ice to melt and gush forth onto the surface.



In either case, the question of what happened to the water remains a mystery. Most scentists do not feel that Mars' climate change was necessarily caused by a cataclysmic event such as an asteroid impact that, perhaps, disturbed the planet's polar orientation or orbit. Many believe that the demise of flowing water on the surface could have resulted from gradual climate change over many millennia as the planet lost its atmosphere.



Under either the warmer-and-wetter or the always-cold scenario, Mars must have had a thicker atmosphere in order to support water that flowed on the surface even only occasionally. If the planet's atmosphere became thinner, liquid water would rapidly evaporate. Over time, carbon dioxide gas reacts with elements in rocks and becomes locked up as a kind of compound called a carbonate. What's left of Mars' atmosphere today is overwhelmingly carbon dioxide.



On Earth, shifting tectonic plates are continually plowing carbonates and other minerals under the surface; heated by magmas, carbon dioxide is released and spews forth in volcanic eruptions, replenishing the carbon dioxide in the atmosphere. Although Mars has no known active volcanoes and there are no signs of fresh lava flows, it had abundant volcanic activity in its past. However, Mars appears to have no tectonic plates, so a critical link in the process that leads to carbon dioxide replenishment in Earth's atmosphere is missing. In short, Mars' atmosphere could have been thinned out over many eons by entrapment of carbon dioxide in rocks across its surface.



That scenario, however, is just a theory. Regardless of the history and fate of the atmosphere, scientists also do not understand what happened to Mars' water. Some undoubtedly must have been lost to space. Water ice has been detected in the permanent cap at Mars' north pole, and may exist in the cap at the south pole. But much water is probably trapped under the surface - either as ice or, if near a heat source, possibly in liquid form well below the surface.





Mars Surveyor 98 Science Goals

The Mars Surveyor 1998 Missions were designed, and their payloads selected, to address the science theme "Volatiles and Climate History" on Mars, thereby directly addressing the climate-history and resource themes of the Mars Surveyor Program, while supporting the life-on-Mars theme through characterization of climate change and its evolving impact on the distribution of water.
Malcolm uses Xbox 360 Avatar
2006-05-28 01:05:26 UTC
No, unless you live in a polar cap where is like Antarctica out there.
PhysicsDude
2006-05-28 00:17:53 UTC
Life is not possible on Mars today, but there are lots of evidence now that water flowed in abundance sometimes in the past on Mars, perhaps over 1 billion years ago. At that time, there certainly could have been life. We are currently searching for such evidence.
2006-05-27 23:50:07 UTC
No, Movie's like..



Total Recall, give people to much imitation and Mars cannot be lived on or people would of done so already.



So we think there's been life there before because they tell us there was water but this is not proof of human life and this is here-say how do we know this is true.



The would be more structural things left besides proof of water.



Books about Life on Mars or fiction.



Oh and yes things are *Impossible* the cure of cancer and other terminated disease's have never been found.
p
2006-05-27 23:34:48 UTC
mars is very similar to earth in size mass

and also there are prooves of existance of water on mars



but it has got a lot of co2 in that atmosphere



we can do somethiong

lets try



go up there and plant some trees on the planet in a green house



let the o2 produced diffuse to the atmosphere



and yes we can can go there to live after some time















you know what

i have thought about it a 1000000000000000000000000000000000

times
SARISAR
2006-05-27 23:34:26 UTC
There is nothing impossible.



Life in terms of any living things could be possible in any where. It means all tiny living things like virus, germs, bacterias and maybe other life we didn't discover yet could be exist.



On the other hand, we don't see any indications like human life could be possibly exist there, because of the necessary adaptions either to Mars or to this type of life that should take place.
dougdell
2006-05-27 23:16:31 UTC
Absolutely!



If life was impossible, we'd be wasting our time trying to find it there. The best scientists at NASA think life is possible there, so we're sending probes to see if we can find it.



Just because life is POSSIBLE on Mars does not mean it's PROBABLE, though. The Martian environment is pretty tough. Water is almost a 100% requirement for life as we know it, and what little water Mars has is locked up in polar ice (although we see lots of signs that water used to flow freely on the surface). Mars is visciously cold. Mars' thin atmosphere only barely provides the gaseous elements that might constitute and support Martian life. And the thin atmosphere also does a poor job of blocking all the dangerous radiation that could kill life very easily.



But life is tenacious. If it did get started on Mars, then it might find a way to survive this harsh environment. The best survivors on earth are bacteria - we find bacteria in surprisingly untenable environments here, like buried under thousands of feet of polar ice, or at the edge of boiling hot deep undersea vents.



There is a very small chance of finding life on Mars, and an even lesser chance that it will be any kind of advanced life. But there IS a possibility. And the possibility that we may not be alone makes it all worthwhile!
kiranvenkat77
2006-05-27 22:57:48 UTC
ITS A BIT HARD ABOUT A POSSIBILITY OF LIFE ON MARS.BUT RESEARCH DONE BY NASA REVEALS THAT LIFE IS POSSIBLE SUBJECT TO SOME ALTERNATIVE LIFE SAVING METHODS LIKE BUILDING A BIG CONTAINER OF OXYGEN WHERE IT CAN GENERATE OXYGEN AND MEN ARE ABLE TO LIVE IN THAT CONTAINER CONTAINING OXYGEN.
~!Blossom!~
2006-05-27 23:09:22 UTC
LIFE ON MARS.



In 1877, Giovanni Schiaparelli produced the first "modern" map of Mars, on which he showed a system of what he called canali. Although canali in Italian means "channel", without the implication of being an artificial feature, the word was commonly translated into English as "canal".





In 1910, Percival Lowell captured the imagination of the public with his book Mars As the Abode of Life. Based on his extensive visual observations (and as we know today, an active imagination) Lowell painted a compelling portrait of a dying planet, whose inhabitants had constructed a vast irrigation system to distribute water from the polar regions to the population centers nearer the equator.



Despite its appeal to the public, the astronomical community never gave serious credence to the details of Lowell's theory. The failure of many observers to confirm the existence of the canals eventually led scientists to suspect that their colleagues had been fooled into seeing the canals, by the difficulty in resolving fine detail from Earth and their own desire to believe. (This map, constructed from Viking orbiter images in the same format as Schiaparelli's -- south is up -- shows no sign of the canals, though a few features may have been interpreted as such.)





But the Lowell-inspired idea of an Earthlike Mars proved more durable. At the dawn of the space age, Mars was considered to have an atmosphere about a tenth the density of Earth's, water ice polar caps that waxed and waned with the seasons, and an annual "wave of darkening" that was often interpreted as growing plant life.



In the 1960s, observations from Earth and flyby spacecraft signalled the beginning of the end for Lowell's Mars. The Mariner 4, 6, and 7 missions returned images of a moonlike, heavily-cratered surface. The atmosphere was found to be almost pure carbon dioxide (CO2), only a hundredth the density of Earth's, and the polar caps proved to be almost entirely frozen CO2. The first global views of Mars, returned by the Mariner 9 orbiter in 1972, revealed that the planet was far more complex than the earlier flyby missions had shown, with huge volcanoes, an enormous canyon system, and evidence of running water at some point in the past. But the wave of darkening was shown to be the result of seasonal redistribution of windblown dust on the surface, the atmosphere's composition and density were confirmed, and most of the evidence for an Earthlike Mars was swept away.



But despite all these blows, the possibility of organisms on the surface could not yet be ruled out. For this reason, in 1976 the Viking landers carried a sophisticated instrument to look for possible life forms on the martian surface.





THE VIKING BIOLOGY EXPERIMENT.



The Viking biology experiment weighed 15.5 kg (34 lbs) and consisted of three subsystems: the Pyrolytic Release experiment (PR), the Labeled Release experiment (LR), and the Gas Exchange experiment (GEX).



In addition, independent of the biology experiments, Viking carried a Gas Chromatograph/Mass Spectrometer (GCMS) that could measure the composition and abundance of organic compounds in the martian soil. (It should be noted that organic is a chemical term simply meaning "carbon-containing", and does not require the presence of life, although all life on Earth does contain carbon.)





LABELED RELEASE.



The LR experiment moistened a 0.5-cc sample of soil with 1 cc of a nutrient consisting of distilled water and organic compounds. The organic compounds had been labeled with radioactive carbon-14. After moistening, the sample would be allowed to incubate for at least 10 days, and any microorganisms would hopefully consume the nutrient and give off gases containing the carbon-14, which would then be detected. (Terrestrial organisms would give off CO2, carbon monoxide (CO), or methane (CH4).)





GAS EXCHANGE.



The GEX experiment partially submerged a 1-cc sample of soil in a complex mixture of compounds the investigators called "chicken soup". The soil would then be incubated for at least 12 days in a simulated martian atmosphere of CO2, with helium and krypton added. Gases that might be emitted from organisms consuming the nutrient would then be detected by a gas chromatograph -- this instrument could detect CO2, oxygen (O2), CH4, hydrogen (H2), and nitrogen (N2).





PYROLYTIC RELEASE.



Of the three Viking biology experiments, only the PR experiment approximated actual martian surface conditions and did not use water. In this experiment, a 0.25-cc soil sample was incubated in a simulated martian atmosphere of CO2 and CO labeled with carbon-14. A xenon arc lamp provided simulated sunlight. After 5 days, the atmosphere was flushed and the sample heated to 625 degrees C (1157F) to break down, or pyrolyze, any organic material, and the resulting gases were passed through a carbon-14 detector to see if any organisms had ingested the labeled atmosphere.



THE RESULTS.



The most important result for the detection of life came not from the biology experiment, but from the GCMS. It found no trace of any organic compound on the surface of Mars. Organic compounds are known to be present in space (for example, in meteorites), so this result came as a complete surprise. The GCMS was definitely working, however, because it was able to detect traces of the cleaning solvents that had been used to sterilize it prior to launch.

The total absence of organic material on the surface made the results of the biology experiments moot, since metabolism involving organic compounds were what those experiments were designed to detect. However, the results from the biology experiments were sufficiently confusing to be worth examining.



To reduce the chance of false positives, the biology experiments not only had to detect life in a soil sample, they had to fail to detect it in another soil sample that had been heat-sterilized (the control sample).





The fact that both the GEX and PR experiments produced positive results even with the control sample indicates that non-biological processes are at work. Subsequent laboratory experiments on Earth demonstrated that highly-reactive oxidizing compounds (oxides or superoxides) in the soil would, when exposed to water, produce hydrogen peroxide. Oxidized iron, such as maghemite, could act as a catalyst to produce the results seen by the PR experiment.

Only the LR experiment appears to have met the criteria for life detection, and it does this rather ambiguously. When the nutrient was first injected, there was a rapid increase in the amount of labeled gas emitted. Subsequent injections of nutrient caused the amount of gas to decrease initially (which is surprising if biological processes were at work) but then to increase slowly. No response was seen in the control sample sterilized at the highest temperature (160C, 320F.) While there is still some controversy, the consensus opinion is that the LR results can also be explained non-biologically.





EXTINCT LIFE.



Most researchers now believe that the results of the Viking biology experiments can explained by purely chemical processes that do not require the presence of life, and the GCMS results completely rule out life in any event. Thus, there is no detectable life at the two Viking landing sites, which were widely separated and different in character (the Viking 2 landing site was specifically chosen because of its high latitude, since it was closer to polar water sources.) While the possibility of "oases" of more favorable conditions for life cannot be eliminated, for example in subsurface permafrost layers or in geothermal vents near volcanoes, the chances that life exists on Mars at the present time do not seem good.

However, we have seen evidence that Mars may have been significantly wetter, perhaps with a denser atmosphere, earlier in its history. If so, there is the possibility that life arose on Mars, only to die out as conditions on the planet worsened. Therefore, some researchers have suggested that future searches for life on Mars be shifted to focus on extinct, rather than extant, life.



On Earth, such extinct life can be found in the form of microfossils and stromatolites. Such forms, as found in western Australia, are the oldest evidence of life on Earth, dating from 3.5 billion years ago. Microfossils are individual fossilized organisms (typically algae), as much as a few millimeters in diameter. Stromatolites are formed when layers of microbial organisms in shallow lakes or pools are covered with sediments. The organisms migrate toward the light after being covered, and the remaining organic material forms a characteristic layered or domed structure.



Stromatolites are important because they may be large enough to be seen by lander (or perhaps even high-resolution orbiter) cameras, and so some researchers have suggested searching for them near features that appear to be ancient lakes or bays. While definitive proof of biological origin would require microscopic imaging or sample return, the discovery of such features would lend credibility to the idea of extinct life.





CONCLUSIONS.



The question of whether life is common or rare in the universe has deep philosophical implications. It is uncertain exactly how life arose on Earth, so it is difficult to determine how common such mechanisms are. But if life also arose on Mars, this would show that those mechanisms operated not just once, but twice, arguing that life may well be common elsewhere.

However, the search for life on Mars thus far has been unsuccessful. Some portion of the scientific community feels that further searches are a waste of time, while another portion remains neutral or guardedly optimistic. In principle, it's simple to prove that there is life on Mars -- all one need do is find an example. Proving there isn't life on Mars is much harder. Even a prolonged negative search can be countered with the suggestion of yet another, more inaccessible place in which to look.



In the case of Mars, the issue has been complicated by the emotional belief in an Earthlike Mars, which has largely been shown to have been a myth. Mars is a spectacular place, and will remain so even if it is finally proved to be lifeless. Today, we don't know for sure if there is or ever was life on Mars. But one thing is certain -- one day, there will be.
2006-05-27 22:29:11 UTC
there was life on mars when it was in a different orbit ,when this changed all life was destroyed and the people that managed to escape ended up here to many peoples belief.

but that was long ago and now life is impossible with out an atmosphere



check www.infowars,the biggest secret by David Icke
Sp()oNg3Y::V.3.[]
2006-05-27 22:27:28 UTC
The aliens on mars must have been living billions of years ago than us. Something must have wipen them out. You know, there can only be one planet with life in existence. That means, some planets must have lived with life billions and billions of years ago, and currently, there is life on earth. Perhaps Mars' life was wipen out, and Earth could have the same fate.
charly
2006-05-27 22:29:39 UTC
Human life? Not without much effort and lots of taxpayers' dollars.



Other life-forms? Possibly, but only very low life forms, if at all.
Lost. at. Sea.
2006-05-27 22:35:00 UTC
Yes.
2006-05-27 22:21:47 UTC
Anything is possible
naughty_lttle_imp
2006-05-27 22:26:54 UTC
I think a better question would be "has it been done in the past?".
Joseph
2006-05-27 22:22:14 UTC
Not without LOTS of equipment (e.g. oxygen generators, shelter, etc.)
drake
2006-05-27 22:27:57 UTC
no because if you stay in certain places in space you can't breath then you'd suffocate yourself
Bob
2006-05-27 22:21:53 UTC
How the hell do you think the martians do it?
randomninja45
2006-05-27 22:30:24 UTC
no, unless its extremely adapted.


This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.
Loading...